FSG: Fast String Graph Construction for De Novo Assembly of Reads Data

نویسندگان

  • Paola Bonizzoni
  • Gianluca Della Vedova
  • Yuri Pirola
  • Marco Previtali
  • Raffaella Rizzi
چکیده

The string graph for a collection of next-generation reads is a lossless data representation that is fundamental for de novo assemblers based on the overlap-layout-consensus paradigm. In this article, we explore a novel approach to compute the string graph, based on the FM-index and Burrows and Wheeler Transform. We describe a simple algorithm that uses only the FM-index representation of the collection of reads to construct the string graph, without accessing the input reads. Our algorithm has been integrated into the string graph assembler (SGA) as a standalone module to construct the string graph. The new integrated assembler has been assessed on a standard benchmark, showing that fast string graph (FSG) is significantly faster than SGA while maintaining a moderate use of main memory, and showing practical advantages in running FSG on multiple threads. Moreover, we have studied the effect of coverage rates on the running times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly

MOTIVATION Eugene Myers in his string graph paper suggested that in a string graph or equivalently a unitig graph, any path spells a valid assembly. As a string/unitig graph also encodes every valid assembly of reads, such a graph, provided that it can be constructed correctly, is in fact a lossless representation of reads. In principle, every analysis based on whole-genome shotgun sequencing (...

متن کامل

Efficient construction of an assembly string graph using the FM-index

MOTIVATION Sequence assembly is a difficult problem whose importance has grown again recently as the cost of sequencing has dramatically dropped. Most new sequence assembly software has started by building a de Bruijn graph, avoiding the overlap-based methods used previously because of the computational cost and complexity of these with very large numbers of short reads. Here, we show how to us...

متن کامل

Localized genome assembly from reads to sca olds: practical traversal of the paired string graph

Next-generation de novo short reads assemblers typically use the following strategy: (1) assemble unpaired reads using heuristics leading to contigs; (2) order contigs from paired reads information to produce sca olds. We propose to unify these two steps by introducing localized assembly: direct construction of sca olds from reads. To this end, the paired string graph structure is introduced, a...

متن کامل

String graph construction using incremental hashing

MOTIVATION New sequencing technologies generate larger amount of short reads data at decreasing cost. De novo sequence assembly is the problem of combining these reads back to the original genome sequence, without relying on a reference genome. This presents algorithmic and computational challenges, especially for long and repetitive genome sequences. Most existing approaches to the assembly pr...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2016